SolidCAM Additive - Upgrade Your Manufacturing
Published

Video: Safety Is No. 1 in Metal AM

John Murray of Concept Laser discusses safety, quality and automation as they relate to additive manufacturing for production metal parts.

Share

In this conversation with AM, Concept Laser president and CEO John Murray describes the way an aerospace manufacturer tested to ensure that powder is contained within a powder-bed additive manufacturing system. “Safety is the most important aspect of all our systems and everything we do,” Murray says. He also describes advancing technology for monitoring and validation of the additive build, and the architecture of production systems based on additive technology. 

 

Transcript:

Pete: I’m Pete Zelinski with Additive Manufacturing Magazine. I’m here with John Murray, the U.S. CEO and president of Concept Laser, a maker of powder bed additive manufacturing metal machines. John, machines that make metal parts through additive manufacturing, there’s some variation. Their differences in terminology that speak to differences in what these machines do, what is your company’s process and how is it different?

John: At a higher level, we just call if 3D printing just to keep it simple. But, as you mentioned, it’s a powder bed fusion process, so this is a fully dense process where you’re getting fully dense titanium aluminum steel parts and so forth.

Pete: It sounds easy and even watching the process, the part seems to come together almost by magic. But this is an industrial process and there are industrial hazards to it. What are the safety concerns of metal additive manufacturing and what are you doing to communicate that to potential users?

John: Yeah, we are absolutely right, safety is tantamount, is the most important aspect of all our systems and everything we do. It’s number one and that’s driven from Frankfurt Sardar CEO in Germany down. That’s a key part and he actually has made the architecture of all systems eight times compliant. That’s a European standard for potentially flammable or hazardous environments. We have one of our large aerospace customers do a rather extensive test. They were worried about bringing an m2 in and the environmental health and safety issues, so they put a sensor on the person’s collar. One on his waist, one at the sieving station and one on the entry door and they ran a number of alloys. They ran the light alloys, aluminum, for a while then they switched to Inconel and they were running Inconel then they checked all these sensors on it, you know? There was a bit of drama right, what’s gonna be in there? They didn’t find a trace of any powders or any soot or anything at any of these sensors and that gave them a tremendous confidence. That, yes, this process and the architecture that Frank has created is truly safe and can be run effectively and safely.

Pete: Had tremendous confidence about a very legitimate concern.

John: So we talked at the beginning when we address a customer out, what do you use for standard personal protection or extended personal protection? Depending on what step you’re doing in the process. So, we go all through that with our customers and they’re sometimes surprised because people don’t like to talk about it. You have to get in a suit, wear a respirator, and you know, you have to take it seriously.

Pete: Another important issue is consistency, repeatability, quality control, what kinds of information, what kinds of data can additive metal process provide, relate to quality control, and how’s your technology advancing in that area?

John: Almost a decade ago, Frank saw the need for this. You realized you have to be able to monitor the process and document the process, otherwise you’re making widgets right there. They’re beautiful widgets. Their metal widgets but that’s all they are, so he started with a product called QML Pool and we’ve just released the QML Pool 3D, so we’re looking directly through the laser into the powder bed into the melt pool and we’re measuring the intensity of the melt pool as well as the shape and area of the melt pool. We then compressed that data and we product a three-dimensional model of that entire build and that’ll show if there’s any porosity, if the laser went to sleep for two nanoseconds and we’re hoping that will help companies be able to certify their parts, whether that’s for the FAA or the FDA or any internal certification process, as they need. So, this three-dimensional model is just another augmentation of the process to get people confidence. They’re building quality fly free parts.

Pete: The adoption of additive is advancing rapidly, if you look forward, maybe just two years, in terms of additive manufacturing in North America, what do you see?

John: That’s a very good question. We have customers who are now ramping up and you know buying systems and groups of 20s or 30s now, so it’s changing from people buying one or two machines to experiment. We’re now there, really breaking out into production. Right now, the architecture is somebody has to go up and touch the machine. They have to start it, wait for it to finish, then come up to the machine afterwards and remove the part on packet we want to alleviate. All that so this is an architecture where it’s the factory of tomorrow. Or its all with autonomous vehicles with robots. Automations key and we’ve done that in our factory in Germany already. We’re moving forward with that factory of tomorrow architecture

Pete: Safety, repeatability, and quality, and even integration and automation. These are important concerns for manufacturing in general. They are the right issues for additive manufacturing as well as this technology increasingly enters mainstream production. Thank you, John.

John: Thank you Pete, we appreciate your time.

 

SolidCAM Additive - Upgrade Your Manufacturing
World According To
Acquire
Airtech
The Cool Parts Show
North America’s Premier Molding and Moldmaking Event
AM Radio

Related Content

Space

“Mantis” AM System for Spacecraft Uses Induction for Deposition

The metal 3D printing system melts wire without lasers. 30-foot-diameter parts are built on a rotary-feed system that eliminates the need for a large machine frame or gantry.

Read More
Repair

Video: Additive Manufacturing for Aircraft Blade Repair

Optomec machines use directed energy deposition guided by optical measurement and automatic programming to repair aircraft engine blades. Here is a look at the 3D printing repair operation.

Read More
Space

3D Printed NASA Thrust Chamber Assembly Combines Two Metal Processes: The Cool Parts Show #71

Laser powder bed fusion and directed energy deposition combine for an integrated multimetal rocket propulsion system that will save cost and time for NASA. The Cool Parts Show visits NASA’s Marshall Space Flight Center.

Read More
Medical & Dental

New Zeda Additive Manufacturing Factory in Ohio Will Serve Medical, Military and Aerospace Production

Site providing laser powder bed fusion as well as machining and other postprocessing will open in late 2023, and will employ over 100. Chief technology officer Greg Morris sees economic and personnel advantages of serving different markets from a single AM facility.

Read More

Read Next

Postprocessing

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More
Inspection & Measurement

Profilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing

UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing. 

Read More

Crushable Lattices: The Lightweight Structures That Will Protect an Interplanetary Payload

NASA uses laser powder bed fusion plus chemical etching to create the lattice forms engineered to keep Mars rocks safe during a crash landing on Earth.

Read More
SolidCAM Additive - Upgrade Your Manufacturing