Formlabs’ Elastomeric Resins Expand Options for Patient-Specific Care
Formlabs’ first elastomeric BioMed materials — BioMed Elastic 50A Resin, BioMed Flex 80A Resin and IBT Flex Resin — can streamline workflows and reduce labor time for flexible, dental and medical biocompatible parts.
BioMed Elastic 50A Resin is suited for long-term skin contact and short-term mucosal membrane contact for flexible patient-matched medical device components, comfortable medical devices and tissue medical models. Photo Credit: Formlabs
Formlabs has added three health care-focused materials to its library with BioMed Elastic 50A Resin, BioMed Flex 80A Resin and IBT Flex Resin. The two BioMed materials can expand the applications for 3D printing in health care, reducing the time and costs associated with traditional production methods (such as molding) for surgical models, medical devices and more. The IBT Flex Resin is designed with tear-resistant, accurate and transparent properties for dental applications, including 3D printed direct composite restoration guides and indirect bonding trays.
According to Formlabs, since the pandemic 3D printing applications in health care and dental have grown with facilities, health networks and providers turning to 3D printers and medical materials to satisfy demand for patient care to solve supply chain challenges. As providers continue recognizing the benefits of patient-specific care that is possible with 3D printing, Formlabs is supporting the momentum with new materials that will reduce production costs and time, expanding access to patient-specific, directly 3D printed dental guides, surgical models, medical components and medical devices.
“Adoption of 3D printing is accelerating in health care and dentistry, bringing patients the benefit of personalized care that improves comfort and outcomes,” says Guillaume Bailliard, Formlabs president of Health Care. “Formlabs’ materials development team is dedicated to delivering new materials and solutions that will advance 3D printing in health care and dental workflows, and expand the possibilities for patient-specific care. By adding these new flexible and elastomeric materials to our extensive biocompatible and dental materials library, we are ushering in a new wave of personalized health care and digital dentistry that will bring the benefits directly to patients.”
BioMed Elastic 50A Resin and BioMed Flex 80A Resin are biocompatible materials with ISO 10993 and USP Class VI certifications that enable an expanded personalized approach to health care. These materials are suited for long-term skin contact and short-term mucosal membrane contact for flexible patient-matched medical device components, comfortable medical devices and tissue medical models for surgeons to reference in the operating room. Each material delivers varying flexibility to suit different applications.
BioMed Elastic 50A resin is a soft and elastic material for applications requiring comfort, biocompatibility and transparency. The material’s elasticity will suit mass-personalized medical devices requiring long-term skin contact and patient-specific fit, soft-tissue models, gastrointestinal models for fluidics visualization or complex neurovascular models for surgeons to reference in the operating room.
BioMed Flex 80A Resin is a firm, flexible, medical-grade material for applications requiring durability, biocompatibility and transparency. The ability to directly print this medical-grade resin can reduce workflow times by eliminating molding to directly produce flexible, patient-specific medical devices or firm tissue medical models surgeons can reference in the operating room.
IBT Flex Resin is a Class I FDA registered, biocompatible material that delivers consistent, predictable outcomes for printing highly accurate, indirect bonding trays and direct composite restoration guides. With enhanced flexibility, tear resistance and translucency, this material can enable dental labs and clinics to save time and costs while maintaining the accuracy needed for the seamless and precise application of orthodontic brackets and restorative composite materials.
- Learn about Formlabs’ efforts to ease treatment for children with severe burns using face masks produced with 3D printing. Working with Formlabs, the Romans Ferrari Center developed a digital workflow for creating custom compressive masks for treating facial burns using 3D scanning and 3D printing — without having to touch the patient.
- Read about Formlabs’ development of tough elastomer powder for strong, functional, skin-safe parts. The TPU 90A powder is the first elastomer material for its Fuse Series 3D printers and which enables durable, skin-safe parts at a low cost for a variety of industries, including health care, consumer goods, manufacturing and engineering.
- Here are some more additions to Formlabs Material portfolio for dental and medical applications. Formlabs’ Dental LT Comfort Resin is a flexible, durable material for comfortable long-term occlusal splints, nightguards and bleaching trays. BioMed Durable Resin is approved for human contact, and enables durable biocompatible and impact-resistant medical devices and instruments.
Related Content
How Machining Makes AM Successful for Innovative 3D Manufacturing
Connections between metal 3D printing and CNC machining serve the Indiana manufacturer in many ways. One connection is customer conversations that resemble a machining job shop. Here is a look at a small company that has advanced quickly to become a thriving additive manufacturing part producer.
Read MoreBig Metal Additive: The Difference Between a Shape and a Part Is Quality
Preparing to scale directed energy deposition to ongoing full production is not a technological challenge: DED is ready. But it is an organizational challenge, says the company founder. Here is what it means to implement a quality system.
Read MoreVideo: 5" Diameter Navy Artillery Rounds Made Through Robot Directed Energy Deposition (DED) Instead of Forging
Big Metal Additive conceives additive manufacturing production factory making hundreds of Navy projectile housings per day.
Read MoreBeehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing
Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.
Read MoreRead Next
Bike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts
Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.
Read MoreProfilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing
UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing.
Read MorePostprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.
Read More