EOS Aluminum Al5X1 Is High-Strength Anodizable Alloy for Industrial 3D Printing
The aluminum alloy offers light weight, high strength, elongation and corrosion resistance.
EOS’ Aluminum Al5X1 is an aluminum alloy engineered specifically for additive manufacturing (AM), but at a more competitive cost than other aluminum alloys with similar strength and elongation properties. The EOS Aluminum Al5X1 delivers excellent performance and material properties with a combination of high strength and elongation, around 410 MPa UTS and 14% elongation.
Requiring only a single-step heat treatment with no Hot Isostatic Pressing (HIP), organizations can manufacture parts faster and at a lower total cost. The 3D printed applications using EOS Aluminum Al5X1 can also be electropolished and anodized (Type II and Type III) for both cosmetic (colored) and corrosion-resistant protective properties. There are no limits to potential color choices, which could be important to consumer-facing products.
EOS Aluminum Al5X1 was tested by multiple organizations, including leading semiconductor, aerospace and defense companies. Early adopters have noted the material’s exceptional performance combined with the competitive cost-per-part (CPP) has created a strong business case for production implementation.
“Since early 2023, we have been working to develop Al5X1 performance data and material allowables on behalf of our prime customers,” says Brian Neff, Sintavia founder and CEO, a designer and additive manufacturer of mechanical systems for the aerospace and defense industry. “Preliminary results are very promising, and we look forward to introducing Al5X1 across our thermodynamic product lines. Developing a higher performing aluminum alloy is of critical importance not only to us, but also to the industry as a whole.”
A combination of high strength and high elongation for an aluminum alloy is critical for manufacturers in industries like aerospace. “But equally crucial is delivering the property combination at a reasonable cost,” says Dr. Ankit Saharan, EOS senior manager of metals technology. “Also interesting is that since the material can be anodized, this makes it very attractive to OEMs in areas like consumer electronics who are seeking to produce different colored products to suit customers’ preferences, with the added bonus of corrosion resistance.”
- Read about EOS developing sustainable polymers for additive manufacturing. The climate-neutral PA 1101 and carbon-reduced PA 2200 polymer materials are designed to increase production efficiency, while supporting more sustainable additive manufacturing.
- Learn about the EOS collaboration with nTop to create file capability that would limit design data bottlenecks. EOS and nTop have created a new nTop Implicit File that can result in up to 99% smaller file sizes, 500 times faster file generation and 60% faster load time, making it more readily available to additive manufacturing build preparation software for manufacturing.
Related Content
With Electrochemical Additive Manufacturing (ECAM), Cooling Technology Is Advancing by Degrees
San Diego-based Fabric8Labs is applying electroplating chemistries and DLP-style machines to 3D print cold plates for the semiconductor industry in pure copper. These complex geometries combined with the rise of liquid cooling systems promise significant improvements for thermal management.
Read MoreVulcanForms Is Forging a New Model for Large-Scale Production (and It's More Than 3D Printing)
The MIT spinout leverages proprietary high-power laser powder bed fusion alongside machining in the context of digitized, cost-effective and “maniacally focused” production.
Read More3D Printed Titanium Replaces Aluminum for Unmanned Aircraft Wing Splice: The Cool Parts Show #72
Rapid Plasma Deposition produces the near-net-shape preform for a newly designed wing splice for remotely piloted aircraft from General Atomics. The Cool Parts Show visits Norsk Titanium, where this part is made.
Read MoreBeehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing
Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.
Read MoreRead Next
Carnegie Mellon Helps Industry, Students Prepare for a Manufacturing Future with AM and AI
Work underway at the university’s Next Manufacturing Center and Manufacturing Futures Institute is helping industrial additive manufacturers achieve success today, while applying artificial intelligence, surrogate modeling and more to solve the problems of the future.
Read More3MF File Format for Additive Manufacturing: More Than Geometry
The file format offers a less data-intensive way of recording part geometry, as well as details about build preparation, material, process and more.
Read MoreHow Avid Product Development Creates Efficiencies in High-Mix, Low-Volume Additive Manufacturing
Contract manufacturer Avid Product Development (a Lubrizol company) has developed strategies to streamline part production through 3D printing so its engineering team can focus on development, design, assembly and other services.
Read More