Mantle’s High-Precision Shaping for Automating Precision Toolmaking
The High-Precision Shaping feature expands the capabilities of Mantle’s hybrid metal 3D printing technology, enabling finer feature creation and dramatically expanding the geometries compatible with its TrueShape process.
Mantle’s High-Precision Shaping package prints features that would require extensive EDM to produce via traditional manufacturing. Photo Credit: Mantle
Mantle, a provider of metal 3D printing for toolmaking, has updated its TrueShape Software with new High-Precision Shaping capabilities, as it continues to deliver a turn-key system with no CAM programming required. The High-Precision Shaping package includes 0.006" and 0.010" ball mill cutting tools and automated toolpathing software.
The package expands the capabilities of Mantle’s hybrid metal 3D printing technology, enabling finer feature creation and dramatically expanding the geometries compatible with its TrueShape process. It also enables tool rooms to automate their toolmaking process by producing sharp corners and edges without requiring EDM operations.
The new cutting tools (including the .006” and .010” ball mill cutting tools) enable radii under 0.003", which is comparable to sinker EDM. By eliminating EDM and other toolmaking operations, Mantle says it helps tool rooms reduce the time required to produce mold tools by up to 75%.
“At Mantle, our goal is to help tool rooms increase the number of complex mold tools they produce while reducing the time, cost and labor to produce them,” says Ted Sorom, Mantle CEO and co-founder. “By deploying our new High-Precision Shaping capabilities, our customers can produce steel tools faster than ever — without requiring programming, setup and operator time from overworked toolmakers.”
Mantle says its TrueShape technology combines 3D printing of its tool steel pastes with traditional CNC machining to refine the shape of printed tools and deliver accuracy, surface finish and tool steel properties unmatched in the metal 3D printing industry. Mantle’s 3D printer is built on a trusted CNC platform and utilizes multiple cutting mills to refine the shape of the printed tool while it is still in a soft state. The new High-Precision Shaping package enables tool rooms to produce tools with radii under 0.003", a 70% improvement compared to the .010" radii previously attainable, thereby eliminating more of the costly and time-consuming EDM operations of traditional toolmaking.
“Mantle allows us to offer production-grade tooling to our customers in prototype time,” says Eric Derner, technical sales applications engineer at Nicolet Plastics, an injection molder. “Mantle will allow us to reduce our need for offshore tooling, which introduces scheduling and supply chain risk, with comparable pricing. With Mantle’s H13 tool steel and new High-Precision Shaping capabilities, we can print tools in-house and deliver complex molded parts to our customers weeks faster than before.”
-
Watch this video about Mantle’s 3D printing technology which enabled moldmaker Westminster Tool to go from design to injection-molded prototype medical parts in three weeks.
-
Learn how Mantle’s P-200 printer and F-200 furnace metal 3D printing technology for toolmaking are said to simplify the way mold tool components are made and accelerate how manufacturers make molded parts, speeding the process of going from product idea to launch.
-
This video shows how PepsiCo used Mantle’s Hybrid 3D printing process to make blow molds for bottles.
- A recent webinar explored Nicolet Plastics’ success using Trueshape Technology to print injection mold tooling, as this method effectively reduced lead times and cost constraints, while producing better inserts.
Related Content
Looking to Secure the Supply Chain for Castings? Don't Overlook 3D Printed Sand Cores and Molds
Concerns about casting lead times and costs have many OEMs looking to 3D print parts directly in metal. But don’t overlook the advantages of 3D printed sand cores and molds applied for conventional metal casting, says Humtown leader.
Read MoreComplete Speaker Lineup Announced for the 3D Printing Workshop at NPE2024: The Plastics Show
Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing.
Read MoreRobot Vs. Gantry for Large-Format Additive Manufacturing (Includes Video)
Additive Engineering Solutions, specialist at 3D printing very large parts and tools on gantry machines, now also uses a robot for large-format AM. Here is how the robot compares.
Read More8 Ways the Plastics Industry Is Using 3D Printing
Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples.
Read MoreRead Next
Postprocessing Steps and Costs for Metal 3D Printing
When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly.
Read MoreBike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts
Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.
Read MoreProfilometry-Based Indentation Plastometry (PIP) as an Alternative to Standard Tensile Testing
UK-based Plastometrex offers a benchtop testing device utilizing PIP to quickly and easily analyze the yield strength, tensile strength and uniform elongation of samples and even printed parts. The solution is particularly useful for additive manufacturing.
Read More