Aitrtech
Published

US Army Tests Additive Manufacturing for Printing Vehicle Repair Parts in the Field

Spee3D participates in successful demonstration with the Army Research Lab to validate the use of additive manufacturing for creating military vehicle repair parts in the field at the point of need.

Share

Spee3D successfully demonstrated the use of additive manufacturing for creating military vehicle repair parts in the field at the point of need. Source: Spee3D

Spee3D successfully demonstrated the use of additive manufacturing for creating military vehicle repair parts in the field at the point of need. Source: Spee3D

Metal additive manufacturing provider Spee3D has demonstrated the speed and agility of additive manufacturing (AM) for creating military vehicle repair parts in the field, enabling equipment to be quickly restored to operational capability.

Spee3D successfully participated in the U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory (ARL) advanced manufacturing demonstration at the University of Tennessee Knoxville, which was held Aug. 5-16, 2024. The goal of the exercise was to train a soldier with no previous AM training or experience to print a crucial part that could be used to build or repair equipment in the field or at a deployed location.

Bradley Fighting Vehicle demonstrating the capability of the new transmission mount. Source: Spee3D

Bradley Fighting Vehicle demonstrating the capability of the new transmission mount. Source: Spee3D

The soldier, who had no experience using Spee3D’s proprietary cold spray additive manufacturing (CSAM) technology, printed a Bradley Fighting Vehicle’s transmission mount. The part was installed in a Bradley and the vehicle was taken out on multiple test cycles through the 278th field test area. Upon return, the part was examined and showed no degradation. The exercise showed that the CSAM technology can successfully create a repair part and restore the vehicle to operational capability so it can return to the fight. VRC Metal Systems was also involved in the AM demonstration.

“Spee3D intends to make additive manufacturing accessible as a quick, cost-effective and easy way to print crucial metal parts that otherwise would not be available at the point of need. Having a soldier with no previous additive manufacturing experience learn our technology within a week certainly meets that goal.” says Byron Kennedy, Spee3D CEO. “We are proud to have collaborated with Army Research Labs, the University of Knoxville, the 278th Armored Cavalry Regiment and all of our other partners to participate in this successful demonstration.”

Bradley Transmission mounts. Right to left: OEM painted part, OEM raw part, 3 x SPEE3D printed Aluminum 6061 parts, SPEE3D printed NAB part. Source: Spee3D

Bradley Transmission mounts. Right to left: OEM painted part, OEM raw part, 3 x SPEE3D printed Aluminum 6061 parts, SPEE3D printed NAB part. Source: Spee3D

The demonstration successfully illustrated how cold spray technology can be utilized to positively impact the warfighter in expeditionary scenarios. “Expeditionary cold systems provide added repair and manufacturing capabilities which can address supply chain challenges as would be expected in a contested logistics environment,” says Michael Nicholas, Materials Engineer at DEVCOM ARL. “Overall, this advanced manufacturing demonstration was extremely successful due to our amazing partnerships with industry, academia and future technology users.”

The exercise was organized by DEVCOM ARL as the government lead, with the University of Tennessee Knoxville serving as the demo host, the 278th Armored Cavalry Regiment (ACR) as site host with soldiers, technical expert Spee3D and VRC Metal Systems. The final demonstration of the printed part was held on August 15 at the ACR Armory in Livingston, Tennessee, with VIPs in attendance.

DEVCOM ARL’s mission is to operationalize science. ARL identifies and executes disruptive research leading to scientific discovery and emerging technologies for the Army’s continuous transformation. A hallmark of ARL’s mission is fostering collaborative partnerships to broaden the Army’s access to expert talent and accelerate transitions of science-enabled capabilities.

World According To
Airtech
Acquire
SolidCAM Additive - Upgrade Your Manufacturing
North America’s Premier Molding and Moldmaking Event
The Cool Parts Show
AM Radio

Related Content

For Coast Guard, AM Adoption Begins With “MacGyver-ish” Crew Members Who Are Using 3D Printing Already

AM suits the Coast Guard’s culture of shipboard problem-solving, says Surface Fleet AM lead. Here is how 3D printers on ships promise to deliver not just substantial cost savings but also an aid to crew capabilities and morale.

Read More
Supply Chain

Additive Manufacturing for Defense: Targeting Qualification

Targeting qualification in additive manufacturing for the defense industry means ensuring repeatability as well as reliability as there is much at stake, including human lives. Certain requirements therefore must be met by weapons systems used by the defense industry.

Read More
Materials

Quadrus: Powder Management Tactics for Tungsten Rhenium and Other AM Alloys

The expert in additive manufacturing of high-value parts for the Defense Department often must change from one exotic material to another in its powder bed machines. Cleaning is a core competency. Here are lessons of this company’s system for working with an ever-changing mix of 3D printed alloys.

Read More
Supply Chain

3D Printed Replacement Clamp for an F-16 Aircraft: The Cool Parts Show #54

3D printing is a valuable addition to sustainment programs, but only if printed parts can be qualified as fast and flexibly as they can be made. In this episode of The Cool Parts Show, we look at the clamp that won the Air Force’s Approval Sprint Challenge designed to address this need. 

Read More

Read Next

Lightweighting

Bike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts

Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.

Read More
Basics

Postprocessing Steps and Costs for Metal 3D Printing

When your metal part is done 3D printing, you just pull it out of the machine and start using it, right? Not exactly. 

Read More

Crushable Lattices: The Lightweight Structures That Will Protect an Interplanetary Payload

NASA uses laser powder bed fusion plus chemical etching to create the lattice forms engineered to keep Mars rocks safe during a crash landing on Earth.

Read More
Airtech International Inc.