Colibrium Additive
Published

The Additive Future

If additive manufacturing of end-use parts becomes routine, the ways we think about industrial production will change.

Share

What will manufacturing look like once additive manufacturing is in more widespread use? DiSanto Technology, subject of this article, offers clues. 3D printing of metal components now accounts for a notable share of this firm’s production. If manufacturing in general is on its way to adopting additive processes to a similar extent, then the differences we see at DiSanto, along with other adopters of additive manufacturing for end-use parts, are suggestive of the shift we are likely to see in the very nature of part production.

How will manufacturing look different once additive production has matured? Here are some of the ways: 

1. Fewer employees. An additive machine needs a person to oversee it, but that same person could go on to oversee four, six or eight of the machines just as effectively. With additive production, expanding capacity does not necessarily entail expanding the production staff.

2. Office-like plants. Additive machines are quiet and clean. A shop with nothing but 3D printers running feels more like a lab than a plant. DiSanto set up its additive machines in what used to be an office. Since the room remains tidy and free of shop noise, it still seems like an office, particularly given the staff member working at a desk within this same room.

3. Simple machining. Some of what is done through five-axis machining today can more easily be done through 3D printing. Geometric complexity adds challenge to a machining process, but in an additive process, a complex part is about as easy to produce as a simple one. In an additive future, it seems likely that relatively simple cuts will account for a larger share of total CNC machining activity.

4. Easy onshore/offshore. To start production on an additive manufacturing job, little is needed in the way of setup or tooling. For companies with access to additive machines in multiple countries, this means the choice of where to produce can be made as quickly as the digital file can be sent. Jobs will shift rapidly across national borders.

5. Super JIT. Additive machines seem slow, but their cycle times are short compared to the overall lead times for other processes. Today, a responsive manufacturer provides just-in-time delivery of known and established parts. Additive production will bring just-in-time delivery of previously unknown and unestablished parts. Quick production will be possible even for new or custom designs.

6. Super unattended. See point 1. A room filled with additive machines might represent the ultimate in unattended production. Such a shop is less like a factory for making parts and more like a farm for growing them.

7. Tooling just for high volumes. Certain DiSanto-made parts used to require forging dies, but no longer. In the future, an increasing share of part numbers will be components that formerly needed engineered tooling, but now can be made through 3D printing. Dies and molds will still be made and used (some will even be made additively), but we will associate this tooling with high volumes to an even greater extent than we do today.

Colibrium Additive
Additive Manufacturing Conference
Convey metal powders with PowTReX from Volkmann
FormNext Chicago
IMTS2024
Are You a 3D
Accelerating
AM Radio
The Cool Parts Show

Related Content

At General Atomics, Do Unmanned Aerial Systems Reveal the Future of Aircraft Manufacturing?

The maker of the Predator and SkyGuardian remote aircraft can implement additive manufacturing more rapidly and widely than the makers of other types of planes. The role of 3D printing in current and future UAS components hints at how far AM can go to save cost and time in aircraft production and design.

Read More
Ceramic

10 Important Developments in Additive Manufacturing Seen at Formnext 2022 (Includes Video)

The leading trade show dedicated to the advance of industrial 3D printing returned to the scale and energy not seen since before the pandemic. More ceramics, fewer supports structures and finding opportunities in wavelengths — these are just some of the AM advances notable at the show this year.

Read More
Production

What Does Additive Manufacturing Readiness Look Like?

The promise of distributed manufacturing is alluring, but to get there AM first needs to master scale production. GKN Additive’s Michigan facility illustrates what the journey might look like.

Read More
Sponsored

3D Printing with Plastic Pellets – What You Need to Know

A few 3D printers today are capable of working directly with resin pellets for feedstock. That brings extreme flexibility in material options, but also requires greater knowledge of how to best process any given resin. Here’s how FGF machine maker JuggerBot 3D addresses both the printing technology and the process know-how.

Read More

Read Next

Enterprise Issues

Looking to Secure the Supply Chain for Castings? Don't Overlook 3D Printed Sand Cores and Molds

Concerns about casting lead times and costs have many OEMs looking to 3D print parts directly in metal. But don’t overlook the advantages of 3D printed sand cores and molds applied for conventional metal casting, says Humtown leader.

Read More
Production

Video: Intelligent Layering Metal 3D Printing at 3DEO

Contract manufacturer 3DEO delivers metal parts using Intelligent Layering, a binder jetting-like 3D printing process the company developed and operates internally. Here’s how it works. 

Read More
Startups

3D Printing Brings Sustainability, Accessibility to Glass Manufacturing

Australian startup Maple Glass Printing has developed a process for extruding glass into artwork, lab implements and architectural elements. Along the way, the company has also found more efficient ways of recycling this material.

Read More
Colibrium Additive