AM In-Depth - Designing from Nature: Modeling Biological Structures and Applying Them to Human Products through 3D Printing

September 30 - 30, 2020

With the prevalence of engineering design and materials development at the forefront of additive manufacturing, there is still a lot to learn from nature when it comes to the design of advanced components. When accounting for strength-to-weight ratio, biological structures often vastly exceed impact resistance even when compared to the most cutting-edge research out there. The structural principles that define these biological "armors" are profound and groundbreaking. But there is a modeling limitation on these structures - how do you utilize current tools to define these structures in 3D for use? Up until now, researchers have used computational modeling to evaluate certain biological structures, but usually, this is for a one-off test or visualization. The use of such structures as applied to commercial applications has been limited by the current software and modeling technology. This presentation steps through several biological armor examples – the telson armor of the mantis shrimp, the specialized bones of the bighorn sheep, and more – and analyzes their structures, then moves into the complex computational modeling of these structures as periodic (i.e., repeatable) implicit elements that can be readily used to fill 3-dimensional spaces (such as football helmets, body armor, etc.) at any scale – without sacrificing speed of use or quality. They also account for a wide range of user inputs so as to be infinitely controllable. The presentation finishes with some finite element analysis of the structures to show their superiority over commonly used 3D lattices.

imts.com/AMInDepthNature

IMTS Spark