SolidCAM Additive - Upgrade Your Manufacturing
Published

Additive Manufacturing and CNC Machining: Separate Together? Hear the Recorded Webinar

A maker of CNC machine tools and a maker of AM technology come together to describe integrating additive and subtractive into an efficient process for production.

Share

Wade Anderson of Okuma, a machine tool builder, and Robert Mudge of RPM Innovations, a maker of metal AM technology using laser deposition, recently collaborated to deliver a webinar on integrating subtractive and additive operations into an automated process for part production. Their presentation, “Using Additive AND Subtractive Manufacturing to Multiply Productivity,” can now be heard in its recorded version.

A process that is able to leverage these two capabilities together could generate a finished, high-value part with very little in the way of prior processing. That is, the capabilities of additive could be used to create an intricate part without any need for casting, forging or assembly of smaller components, while machining could then ensure that this part meets tight tolerance requirements for dimensions and surface finish.

But does the use of additive and subtractive together in this way mean that both of the operations ought to occur in the same machine?

Not necessarily, the two men say. In full production, they argue that the more efficient and effective process is likely to be the one that keeps these operations separate, but links them together through some kind of shared automation such as a flexible manufacturing system (FMS). Arguments for keeping the capabilities separate can be found on both the additive and subtractive sides.

Mudge explains why the efficiency of metal AM favors keeping this operation in its own machine. The reasons he gives include:

  • Moisture control. The use of coolant impedes control over the argon environment of the laser machine.
  • Material efficiency. In a dedicated AM machine, much of the metal powder not used in a given build can be reclaimed. But letting the powder become mixed with chips prevents this reclamation.
  • Secondary processing. The part might require a heat treatment process prior to machining. Separating the machines makes it easier for a step such as this to come between the two operations.

Wade, meanwhile, sees the argument from the machining side. He says, “In the machine tool world, the biggest opportunity we see for efficiency gain is increased utilization.” Combining machining and additive into one machine negatively affects utilization, he says, because it removes opportunities to balance the use of both capabilities. Additive is liable to proceed far more slowly than the subtractive cutting. That is why, in the FMS cell that he and Mudge propose, a single five-axis machining center is sufficient to support the output of three RPM laser deposition machines linked to the same cell. (See video animation of that cell within this article.)

Mudge picks up on the utilization point with a detailed cost breakdown that considers a part requiring 40 hours of subtractive build time and 10 hours of machining. Within the 50 total hours required to make this part, the separation of the two operations between different machines leaves the machine tool open to take on 40 hours of additional work (not to mention freeing up 10 hours on the additive machine).

To see Mudge’s analysis within the full presentation on additive and subtractive, including to the audience questions asked while the presentation was live, view the archived webinar.

SolidCAM Additive - Upgrade Your Manufacturing
Acquire
World According To
Airtech
North America’s Premier Molding and Moldmaking Event
AM Radio
The Cool Parts Show

Related Content

Materials

Additive Manufacturing Is Subtractive, Too: How CNC Machining Integrates With AM (Includes Video)

For Keselowski Advanced Manufacturing, succeeding with laser powder bed fusion as a production process means developing a machine shop that is responsive to, and moves at the pacing of, metal 3D printing.

Read More
Cool Parts

This Drone Bird with 3D Printed Parts Mimics a Peregrine Falcon: The Cool Parts Show #66

The Drone Bird Company has developed aircraft that mimic birds of prey to scare off problem birds. The drones feature 3D printed fuselages made by Parts on Demand from ALM materials. 

Read More
Supply Chain

Video: 5" Diameter Navy Artillery Rounds Made Through Robot Directed Energy Deposition (DED) Instead of Forging

Big Metal Additive conceives additive manufacturing production factory making hundreds of Navy projectile housings per day.

Read More
Defense

Beehive Industries Is Going Big on Small-Scale Engines Made Through Additive Manufacturing

Backed by decades of experience in both aviation and additive, the company is now laser-focused on a single goal: developing, proving and scaling production of engines providing 5,000 lbs of thrust or less.

Read More

Read Next

Machining

The Case for 3D Printing in Machine Shops

A small 3D printer frees up CNC machining capacity by producing tooling and prototypes so the machine tools don’t have to.

Read More
Machining

High-Throughput Cell Segregates Additive, Subtractive Processes

The real value of building parts layer by layer isn't the potential to replace conventional, subractive machining, but to complement it.

Read More
Design

Bike Manufacturer Uses Additive Manufacturing to Create Lighter, More Complex, Customized Parts

Titanium bike frame manufacturer Hanglun Technology mixes precision casting with 3D printing to create bikes that offer increased speed and reduced turbulence during long-distance rides, offering a smoother, faster and more efficient cycling experience.

Read More
SolidCAM Additive - Upgrade Your Manufacturing